1,796 research outputs found

    Self-Calibration Methods for Uncontrolled Environments in Sensor Networks: A Reference Survey

    Get PDF
    Growing progress in sensor technology has constantly expanded the number and range of low-cost, small, and portable sensors on the market, increasing the number and type of physical phenomena that can be measured with wirelessly connected sensors. Large-scale deployments of wireless sensor networks (WSN) involving hundreds or thousands of devices and limited budgets often constrain the choice of sensing hardware, which generally has reduced accuracy, precision, and reliability. Therefore, it is challenging to achieve good data quality and maintain error-free measurements during the whole system lifetime. Self-calibration or recalibration in ad hoc sensor networks to preserve data quality is essential, yet challenging, for several reasons, such as the existence of random noise and the absence of suitable general models. Calibration performed in the field, without accurate and controlled instrumentation, is said to be in an uncontrolled environment. This paper provides current and fundamental self-calibration approaches and models for wireless sensor networks in uncontrolled environments

    Programming 1 and sustainability

    Get PDF
    Computer programming is an essential skill for today's engineers, and sustainability plays a role of growing interest in any of the design phases of an engineering project. The fundamentals of sustainability, with basic concepts such as "carbon intensity", must be covered in any engineering curriculum. We propose a basic computer programming course in which the lab sessions incorporate exercises related to the computation of environmental impacts. For instance, an exercise might request the computation of the carbon footprint of the lab sessions during a whole year. Lab sessions use an automatic evaluation server, so called Jutge.org that assesses about the correctness of the programs submitted by the students. New exercises concerning sustainability topics are included in the Jutge.org course. The course involves the effort of a multidisciplinary team. First, lecturers on basic programming are required. An expert on automatic evaluation of computer programs is essential to prepare the statements and the test sets of the proposed exercises. Finally, the advice of economists and sustainability experts is crucial to guarantee judicious conclusions are drawn from each exercise. Forming a team with this profile is a challenging task. Our Computer Science (CS) department lectures basic programming courses to more than 1700 students/year. The success of this approach could bring a substantial social impact in our ecosystem

    Scavenging patterns of generalist predators in forested areas: the potential implications of increase in carrion availability on a threatened capercaillie population

    Get PDF
    The increases in ungulate populations and hunting bags throughout Europe and North America have resulted in higher carcass numbers available for mesocarnivore species in temperate and boreal forests. The increase in food resources can sustain denser predator populations, potentially affecting prey species such as the threatened western capercaillie Tetrao urogallus. We investigated the ungulate population trends in recent decades and the carrion use by facultative scavengers in areas of the Pyrenees occupied by capercaillie to assess the potential effects on predation of nests and adult birds, and on its population trend. We found a significant increase in the number of ungulates harvested during the period of sharp capercaillie population decline. Carrion was provided experimentally in forested areas occupied by capercaillie showing that remains were mainly consumed by red fox Vulpes vulpes, followed by wild boar Sus scrofa and marten species (Martes sp.). Season (cold or warm) was the most important factor determining scavenging activity in most species. Main predators of capercaillie nests and adults were martens and red fox, with no predation by wild boar. Our data show that main predators of capercaillie are the same species that mainly consume carrion, especially in winter, and that plentiful carrion resources could maintain higher populations of these species, potentially increasing predation pressure on the capercaillie population. This study shows that managing carrion arising from hunting activity in areas of capercaillie distribution is a necessary management action to reduce the available carrion biomass and so reduce the impact of mesocarnivores on capercaillie conservation.We acknowledge the forestry rangers of Generalitat de Catalunya for field work. The comments of two anonymous reviewers improved the previous version. This work was funded by the Spanish Ministry of Science, Innovation and Universities (RTI2018-099609-B-C22) and the Spanish Ministry for the Ecological Transition and the Demographic Challenge

    Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpcc.9b05689".[EN] Highly crystalline pure silica MFI zeolites have been synthesized using tetraethylammonium (TEA), tetraethylphosphonium (TEP), or a mixture of both cations in different proportions as organic structure directing agents (OSDAs). The zeolites have been deeply characterized in order to get insight about the guest guest interactions involving the OSDAs and the guest host interactions involving the OSDAs and the inorganic framework, as well as the main features of the resulting materials. The results show that the average size of the MFI crystals decreases when TEP is present within the zeolite and that this cation is homogeneously distributed throughout the crystallites. The multinuclear NMR investigation (H-1, C-13, N-14, F-19, Si-29, P-31) indicates that TEP interacts with the zeolite host creating higher heterogeneity of the SiO4 crystallographic sites and a diminution on the mobility of fluorine atoms incorporated into the zeolite. Moreover, the presence of TEP influences the dynamics of the nitrogen atoms of the TEA molecules, and 2D heteronuclear correlation experiments give evidence on the spatial proximity of the TEA and TEP molecules in the MFI zeolites. Then, it is concluded that TEA and TEP are intimately mixed within the zeolite voids of the pure silica MFI samples synthesized by the dual template route.Financial support by the MINECO of Spain through the Severo Ochoa (SEV-2016-0683) and RTI2018-101784-B-I00 projects is gratefully acknowledged. The authors also thank the Microscopy Service of the Universitat Politecnica de Valencia for its assistance in microscopy characterization (FESEM equipment preparation). J.M.-O. (SEV-2012-0267-02) is grateful to the Severo Ochoa Program for a predoctoral fellowship.Martinez-Ortigosa, J.; Simancas-Coloma, J.; Vidal Moya, JA.; Gaveau, P.; Rey Garcia, F.; Alonso, B.; Blasco Lanzuela, T. (2019). Host-Guest and Guest-Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy. The Journal of Physical Chemistry C. 123(36):22324-22334. https://doi.org/10.1021/acs.jpcc.9b05689S223242233412336Davis, M. E., & Lobo, R. F. (1992). Zeolite and molecular sieve synthesis. Chemistry of Materials, 4(4), 756-768. doi:10.1021/cm00022a005Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060iWilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062Liu, X., Yan, N., Wang, L., Ma, C., Guo, P., Tian, P., … Liu, Z. (2019). Landscape of AlPO-based structures and compositions in the database of zeolite structures. Microporous and Mesoporous Materials, 280, 105-115. doi:10.1016/j.micromeso.2019.01.047McCusker, L. B., Liebau, F., & Engelhardt, G. (2003). Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous and Mesoporous Materials, 58(1), 3-13. doi:10.1016/s1387-1811(02)00545-0Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914uCorma, A., & Martinez, A. (1995). Zeolites and Zeotypes as catalysts. Advanced Materials, 7(2), 137-144. doi:10.1002/adma.19950070206Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406nBurton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014Sastre, G., Vidal-Moya, J. A., Blasco, T., Rius, J., Jordá, J. L., Navarro, M. T., … Corma, A. (2002). Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie International Edition, 41(24), 4722-4726. doi:10.1002/anie.200290028Chauhan, N. L., Das, J., Jasra, R. V., Parikh, P. A., & Murthy, Z. V. P. (2012). Synthesis of small-sized ZSM-5 zeolites employing mixed structure directing agents. Materials Letters, 74, 115-117. doi:10.1016/j.matlet.2012.01.094Mitani, E., Yamasaki, Y., Tsunoji, N., Sadakane, M., & Sano, T. (2018). Synthesis of phosphorus-modified AFX zeolite using a dual-template method with tetraethylphosphonium hydroxide as phosphorus modification agent. Microporous and Mesoporous Materials, 267, 192-197. doi:10.1016/j.micromeso.2018.03.033Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302bCamblor, M. A., Villaescusa, L. A., & Díaz‐Cabañas, M. J. (1999). Topics in Catalysis, 9(1/2), 59-76. doi:10.1023/a:1019154304344Koller, H., Wölker, A., Villaescusa, L. A., Díaz-Cabañas, M. J., Valencia, S., & Camblor, M. A. (1999). Five-Coordinate Silicon in High-Silica Zeolites. Journal of the American Chemical Society, 121(14), 3368-3376. doi:10.1021/ja9840549Koller, H., Wölker, A., Eckert, H., Panz, C., & Behrens, P. (1997). Five-Coordinate Silicon in Zeolites: Probing SiO4/2F− Sites in Nonasil and ZSM-5 with29Si Solid-State NMR Spectroscopy. Angewandte Chemie International Edition in English, 36(24), 2823-2825. doi:10.1002/anie.199728231Dědeček, J., Tabor, E., & Sklenak, S. (2018). Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions. ChemSusChem, 12(3), 556-576. doi:10.1002/cssc.201801959Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Yun, Y., Hernández, M., Wan, W., Zou, X., Jordá, J. L., Cantín, A., … Corma, A. (2015). The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chemical Communications, 51(36), 7602-7605. doi:10.1039/c4cc10317cSonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621cKakiuchi, Y., Tanigawa, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2019). Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 575, 204-213. doi:10.1016/j.apcata.2019.02.026Van der Bij, H. E., & Weckhuysen, B. M. (2015). Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis. Chemical Society Reviews, 44(20), 7406-7428. doi:10.1039/c5cs00109aBLASCO, T., CORMA, A., & MARTINEZTRIGUERO, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267-277. doi:10.1016/j.jcat.2005.11.011Liu, X., & Luo, Q. (2017). Solid State NMR Spectroscopy Studies of the Nature of Structure Direction of OSDAs in Pure-Silica Zeolites ZSM-5 and Beta. The Journal of Physical Chemistry C, 121(24), 13211-13217. doi:10.1021/acs.jpcc.7b03350Fyfe, C. A., & Brouwer, D. H. (2006). Optimization, Standardization, and Testing of a New NMR Method for the Determination of Zeolite Host−Organic Guest Crystal Structures. Journal of the American Chemical Society, 128(36), 11860-11871. doi:10.1021/ja060744yDib, E., Gimenez, A., Mineva, T., & Alonso, B. (2015). Preferential orientations of structure directing agents in zeolites. Dalton Transactions, 44(38), 16680-16683. doi:10.1039/c5dt02558cDib, E., Mineva, T., Gaveau, P., & Alonso, B. (2013). 14N solid-state NMR: a sensitive probe of the local order in zeolites. Physical Chemistry Chemical Physics, 15(42), 18349. doi:10.1039/c3cp51845kDib, E., Mineva, T., Gaveau, P., Véron, E., Sarou-Kanian, V., Fayon, F., & Alonso, B. (2017). Probing Disorder in Al-ZSM-5 Zeolites by 14N NMR Spectroscopy. The Journal of Physical Chemistry C, 121(29), 15831-15841. doi:10.1021/acs.jpcc.7b04861Tuel, A., Ben Taǎrit, Y., & Naccache, C. (1993). Characterization of TS-1 synthesized using mixtures of tetrabutyl and tetraethyl ammonium hydroxides. Zeolites, 13(6), 454-461. doi:10.1016/0144-2449(93)90120-rDing, J., Xue, T., Wu, H., & He, M. (2017). One-step post-synthesis treatment for preparing hydrothermally stable hierarchically porous ZSM-5. Chinese Journal of Catalysis, 38(1), 48-57. doi:10.1016/s1872-2067(16)62549-4Schmidt-Rohr, K., Clauss, J., & Spiess, H. W. (1992). Correlation of structure, mobility, and morphological information in heterogeneous polymer materials by two-dimensional wideline-separation NMR spectroscopy. Macromolecules, 25(12), 3273-3277. doi:10.1021/ma00038a037Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., … Hoatson, G. (2001). Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40(1), 70-76. doi:10.1002/mrc.984Chen, X., Yan, W., Cao, X., Yu, J., & Xu, R. (2009). Fabrication of silicalite-1 crystals with tunable aspect ratios by microwave-assisted solvothermal synthesis. Microporous and Mesoporous Materials, 119(1-3), 217-222. doi:10.1016/j.micromeso.2008.10.015Schmidt, J. E., Fu, D., Deem, M. W., & Weckhuysen, B. M. (2016). Template–Framework Interactions in Tetraethylammonium‐Directed Zeolite Synthesis. Angewandte Chemie International Edition, 55(52), 16044-16048. doi:10.1002/anie.201609053Baerlocher, Ch.; McCusker, L. B. Database of Zeolite Structures. http://www.iza-structure.org/databases/.Fyfe, C. A., Brouwer, D. H., Lewis, A. R., Villaescusa, L. A., & Morris, R. E. (2002). Combined Solid State NMR and X-ray Diffraction Investigation of the Local Structure of the Five-Coordinate Silicon in Fluoride-Containing As-Synthesized STF Zeolite. Journal of the American Chemical Society, 124(26), 7770-7778. doi:10.1021/ja012558sFyfe, C. A., Brouwer, D. H., Lewis, A. R., & Chézeau, J.-M. (2001). Location of the Fluoride Ion in Tetrapropylammonium Fluoride Silicalite-1 Determined by 1H/19F/29Si Triple Resonance CP, REDOR, and TEDOR NMR Experiments. Journal of the American Chemical Society, 123(28), 6882-6891. doi:10.1021/ja010532vBrunklaus, G., Koller, H., & Zones, S. I. (2016). Defect Models of As-Made High-Silica Zeolites: Clusters of Hydrogen-Bonds and Their Interaction with the Organic Structure-Directing Agents Determined from1H Double and Triple Quantum NMR Spectroscopy. Angewandte Chemie International Edition, 55(46), 14459-14463. doi:10.1002/anie.201607428Koller, H., Lobo, R. F., Burkett, S. L., & Davis, M. E. (1995). SiO-.cntdot. .cntdot. .cntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 99(33), 12588-12596. doi:10.1021/j100033a036Dib, E., Grand, J., Mintova, S., & Fernandez, C. (2015). Structure-Directing Agent Governs the Location of Silanol Defects in Zeolites. Chemistry of Materials, 27(22), 7577-7579. doi:10.1021/acs.chemmater.5b03668Losch, P., Pinar, A. B., Willinger, M. G., Soukup, K., Chavan, S., Vincent, B., … Louis, B. (2017). H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. Journal of Catalysis, 345, 11-23. doi:10.1016/j.jcat.2016.11.005Dib, E., Alonso, B., & Mineva, T. (2014). DFT-D Study of 14N Nuclear Quadrupolar Interactions in Tetra-n-alkyl Ammonium Halide Crystals. The Journal of Physical Chemistry A, 118(19), 3525-3533. doi:10.1021/jp502858nMineva, T., Gaveau, P., Galarneau, A., Massiot, D., & Alonso, B. (2011). 14N: A Sensitive NMR Probe for the Study of Surfactant–Oxide Interfaces. The Journal of Physical Chemistry C, 115(39), 19293-19302. doi:10.1021/jp206567

    Polarimetric imaging microscopy for advanced inspection of vegetal tissues

    Get PDF
    Optical microscopy techniques for plant inspection benefit from the fact that at least one of the multiple properties of light (intensity, phase, wavelength, polarization) may be modified by vegetal tissues. Paradoxically, polarimetric microscopy although being a mature technique in biophotonics, is not so commonly used in botany. Importantly, only specific polarimetric observables, as birefringence or dichroism, have some presence in botany studies, and other relevant metrics, as those based on depolarization, are underused. We present a versatile method, based on a representative selection of polarimetric observables, to obtain and to analyse images of plants which bring significant information about their structure and/or the spatial organization of their constituents (cells, organelles, among other structures). We provide a thorough analysis of polarimetric microscopy images of sections of plant leaves which are compared with those obtained by other commonly used microscopy techniques in plant biology. Our results show the interest of polarimetric microscopy for plant inspection, as it is non-destructive technique, highly competitive in economical and time consumption, and providing advantages compared to standard non-polarizing techniques

    Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites

    Get PDF
    This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 16390 16396 , which has been published in final form at https://doi.org/10.1002/chem.201904043. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Expanding the previously known family of -onium (ammonium, phosphonium, and sulfonium) organic structure-directing agents (OSDAs) for the synthesis of zeolite MFI, a new member, the arsonium cation, is used for the first time. The new group of tetraalkylarsonium cations has allowed the synthesis of the zeolite ZSM-5 with several different chemical compositions, opening a route for the synthesis of zeolites with a new series of OSDA. Moreover, the use of As replacing N in the OSDA allows the introduction of probe atoms that facilitate the study of these molecules by powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (MAS NMR), and X-ray absorption spectroscopy (XAS). Finally, the influence of trivalent elements such as B, Al, or Ga isomorphically replacing Si atoms in the framework structure and its interaction with the As species has been studied. The suitability of the tetraalkylarsonium cation for carrying out the crystallization of zeolites is demonstrated along with the benefit of the presence of As atoms in the occluded OSDA, which allows its advanced characterization as well as the study of its evolution during OSDA removal by thermal treatments.Program Severo Ochoa SEV-2016-0683 and Maria de Maeztu MDM-2015-0538 are gratefully acknowledged. S.S-F. thanks MEC for his Severo Ochoa Grant SPV-2013-067884, P.O.-B. and G.M.E. thank MEC for his Ramon y Cajal contracts (RYC-2014-16620 and RYC-2013-14386). The authors thank the financial support by the Spanish Government (RTI2018-096399-A-I00, RTI2018-101784-B-I00 and CTQ2017-89528-P) and the Generalitat Valeciana (PROMETEO/2017/066). The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. We gratefully acknowledge ESRF synchrotron for allocating beamtime (proposal CH-5193), the Italian CRG beam-line at ESRF (LISA-BM08), and Alessandro Puri for the help and technical support during our experiment. C.W.L. (Science without Frontiers-Process no. 13191/13-6) thanks CAPES for a predoctoral fellowship.Saez-Ferre, S.; Lopes, CW.; Simancas-Coloma, J.; Vidal Moya, JA.; Blasco Lanzuela, T.; Agostini, G.; Mínguez Espallargas, G.... (2019). Use of Alkylarsonium Directing Agents for the Synthesis and Study of Zeolites. Chemistry - A European Journal. 25(71):16390-16396. https://doi.org/10.1002/chem.201904043S16390163962571Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016Shayib, R. M., George, N. C., Seshadri, R., Burton, A. W., Zones, S. I., & Chmelka, B. F. (2011). Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks. Journal of the American Chemical Society, 133(46), 18728-18741. doi:10.1021/ja205164uInternational Zeolite Association Website http://www.iza-online.org/(accessed October 4 2018).Pinar, A. B., McCusker, L. B., Baerlocher, C., Hwang, S.-J., Xie, D., Benin, A. I., & Zones, S. I. (2016). Synthesis and structural characterization of Zn-containing DAF-1. New Journal of Chemistry, 40(5), 4160-4166. doi:10.1039/c5nj02897cDorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206oCorma, A., Diaz-Cabanas, M. J., Jorda, J. L., Rey, F., Sastre, G., & Strohmaier, K. G. (2008). A Zeolitic Structure (ITQ-34) with Connected 9- and 10-Ring Channels Obtained with Phosphonium Cations as Structure Directing Agents. Journal of the American Chemical Society, 130(49), 16482-16483. doi:10.1021/ja806903cCorma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107Hernández-Rodríguez, M., Jordá, J. L., Rey, F., & Corma, A. (2012). Synthesis and Structure Determination of a New Microporous Zeolite with Large Cavities Connected by Small Pores. Journal of the American Chemical Society, 134(32), 13232-13235. doi:10.1021/ja306013kSimancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394Jo, C., Lee, S., Cho, S. J., & Ryoo, R. (2015). Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents. Angewandte Chemie International Edition, 54(43), 12805-12808. doi:10.1002/anie.201506678Jo, C., Lee, S., Cho, S. J., & Ryoo, R. (2015). Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents. Angewandte Chemie, 127(43), 12996-12999. doi:10.1002/ange.201506678Lee, S., Jo, C., Park, H., Kim, J., & Ryoo, R. (2019). Sulfonium-based organic structure-directing agents for microporous aluminophosphate synthesis. Microporous and Mesoporous Materials, 280, 75-81. doi:10.1016/j.micromeso.2019.01.048Fattorini, D., Notti, A., & Regoli, F. (2006). Characterization of arsenic content in marine organisms from temperate, tropical, and polar environments. Chemistry and Ecology, 22(5), 405-414. doi:10.1080/02757540600917328Bonilla, G., Díaz, I., Tsapatsis, M., Jeong, H.-K., Lee, Y., & Vlachos, D. G. (2004). Zeolite (MFI) Crystal Morphology Control Using Organic Structure-Directing Agents. Chemistry of Materials, 16(26), 5697-5705. doi:10.1021/cm048854wVan Koningsveld, H., van Bekkum, H., & Jansen, J. C. (1987). On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. Acta Crystallographica Section B Structural Science, 43(2), 127-132. doi:10.1107/s0108768187098173Fyfe, C. A., Brouwer, D. H., Lewis, A. R., & Chézeau, J.-M. (2001). Location of the Fluoride Ion in Tetrapropylammonium Fluoride Silicalite-1 Determined by1H/19F/29Si Triple Resonance CP, REDOR, and TEDOR NMR Experiments. Journal of the American Chemical Society, 123(28), 6882-6891. doi:10.1021/ja010532vBalimann, G., & Pregosin, P. . (1977). Arsenic-75 nuclear magnetic resonance. A study of some arsenic salts. Journal of Magnetic Resonance (1969), 26(2), 283-289. doi:10.1016/0022-2364(77)90174-3Klinowski, J. (1991). Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews, 91(7), 1459-1479. doi:10.1021/cr00007a010Canche-Tello, J., Vargas, M. C., Hérnandez-Cobos, J., Ortega-Blake, I., Leclercq, A., Solari, P. L., … Mustre de Leon, J. (2015). X-ray Accelerated Photo-Oxidation of As(III) in Solution. The Journal of Physical Chemistry A, 119(12), 2829-2833. doi:10.1021/jp510596pArai, Y., Elzinga, E. J., & Sparks, D. L. (2001). X-ray Absorption Spectroscopic Investigation of Arsenite and Arsenate Adsorption at the Aluminum Oxide–Water Interface. Journal of Colloid and Interface Science, 235(1), 80-88. doi:10.1006/jcis.2000.7249Farquhar, M. L., Charnock, J. M., Livens, F. R., & Vaughan, D. J. (2002). Mechanisms of Arsenic Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Mackinawite, and Pyrite:  An X-ray Absorption Spectroscopy Study. Environmental Science & Technology, 36(8), 1757-1762. doi:10.1021/es010216gMorin, G., Ona-Nguema, G., Wang, Y., Menguy, N., Juillot, F., Proux, O., … Brown Jr., G. E. (2008). Extended X-ray Absorption Fine Structure Analysis of Arsenite and Arsenate Adsorption on Maghemite. Environmental Science & Technology, 42(7), 2361-2366. doi:10.1021/es072057sRamírez-Solís, A., Mukopadhyay, R., Rosen, B. P., & Stemmler, T. L. (2004). Experimental and Theoretical Characterization of Arsenite in Water:  Insights into the Coordination Environment of As−O. Inorganic Chemistry, 43(9), 2954-2959. doi:10.1021/ic0351592Prieto, C., Blasco, T., Camblor, M., & Pérez-Pariente, J. (2000). Characterization of Ga-substituted zeolite Beta by X-ray absorption spectroscopy. Journal of Materials Chemistry, 10(6), 1383-1387. doi:10.1039/b001643hLamberti, C., Turnes Palomino, G., Bordiga, S., Zecchina, A., Spanò, G., & Otero Areán, C. (1999). Catalysis Letters, 63(3/4), 213-216. doi:10.1023/a:1019025206662Axon, S. A., Huddersman, K., & Klinowski, J. (1990). Gallium EXAFS and solid-state NMR studies of Ga-substituted MFI-type zeolites. Chemical Physics Letters, 172(5), 398-404. doi:10.1016/s0009-2614(90)87133-

    Detection of Beta-Lactam-Resistant Escherichia coli and Toxigenic Clostridioides difficile Strains in Wild Boars Foraging in an Anthropization Gradient

    Get PDF
    Funding: Universitat Autònoma de Barcelona (PIF-UAB 2015). Secretaria d'Universitats i Recerca del Departament d'Economia i Coneixement de la Generalitat de Catalunya 2018FI_B_00978 i 2016FI_B 00425Disease transmission among wild boars, domestic animals and humans is a public health concern, especially in areas with high wild boar densities. In this study, fecal samples of wild boars (n = 200) from different locations of the Metropolitan Area of Barcelona were analyzed by PCR to explore the frequency of β-lactamases and extended cephalosporin and carbapenem resistance genes (ESBLs) in Escherichia coli strains and the presence of toxigenic Clostridioides difficile. The prevalence of genes conferring resistance to β-lactam antimicrobials was 8.0% (16/200): blaCMY-2 (3.0%), blaTEM-1b (2.5%), blaCTX-M-14 (1.0%), blaSHV-28 (1.0%), blaCTX-M-15 (0.5%) and blaCMY-1 (0.5%). Clostridioides difficile TcdA+ was detected in two wild boars (1.0%), which is the first report of this pathogen in wild boars in Spain. Moreover, the wild boars foraging in urban and peri-urban locations were more exposed to AMRB sources than the wild boars dwelling in natural environments. In conclusion, the detection of E. coli carrying ESBL/AmpC genes and toxigenic C. difficile in wild boars foraging in urban areas reinforces the value of this game species as a sentinel of environmental AMRB sources. In addition, these wild boars can be a public and environmental health concern by disseminating AMRB and other zoonotic agents. Although this study provides the first hints of the potential anthropogenic sources of AMR, further efforts should be conducted to identify and control them

    Mutations in TRAPPC11 are associated with a congenital disorder of glycosylation.

    Get PDF
    Congenital disorders of glycosylation (CDG) are a heterogeneous and rapidly growing group of diseases caused by abnormal glycosylation of proteins and/or lipids. Mutations in genes involved in the homeostasis of the endoplasmic reticulum (ER), the Golgi apparatus (GA), and the vesicular trafficking from the ER to the ER-Golgi intermediate compartment (ERGIC) have been found to be associated with CDG. Here, we report a patient with defects in both N- and O-glycosylation combined with a delayed vesicular transport in the GA due to mutations in TRAPPC11, a subunit of the TRAPPIII complex. TRAPPIII is implicated in the anterograde transport from the ER to the ERGIC as well as in the vesicle export from the GA. This report expands the spectrum of genetic alterations associated with CDG, providing new insights for the diagnosis and the understanding of the physiopathological mechanisms underlying glycosylation disorders

    Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    Get PDF
    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors
    corecore